Existence of Multiple Periodic Solutions for Second-order Discrete Hamiltonian Systems with Partially Periodic Potentials
نویسندگان
چکیده
In this article, we use critical point theory to obtain multiple periodic solutions for second-order discrete Hamiltonian systems, when the nonlinearity is partially periodic and its gradient is linearly and sublinearly bounded.
منابع مشابه
Multiple periodic solutions for second-order discrete Hamiltonian systems
By applying critical point theory, the multiplicity of periodic solutions to second-order discrete Hamiltonian systems with partially periodic potentials was considered. It is noticed that, in this paper, the nonlinear term is growing linearly and main results extend some present results. c ©2017 all rights reserved.
متن کاملMULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملPERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS
There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...
متن کاملMultiple Periodic Solutions for Perturbed Second-order Impulsive Hamiltonian Systems
The existence of three distinct periodic solutions for a class of perturbed impulsive Hamiltonian systems is established. The techniques used in the proofs are based on variational methods. AMS Subject Classification: 34B15
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کامل